Using Local Alignments for Relation Recognition

نویسندگان

  • Sophia Katrenko
  • Pieter W. Adriaans
  • Maarten van Someren
چکیده

This paper discusses the problem of marrying structural similarity with semantic relatedness for Information Extraction from text. Aiming at accurate recognition of relations, we introduce local alignment kernels and explore various possibilities of using them for this task. We give a definition of a local alignment (LA) kernel based on the Smith-Waterman score as a sequence similarity measure and proceed with a range of possibilities for computing similarity between elements of sequences. We show how distributional similarity measures obtained from unlabeled data can be incorporated into the learning task as semantic knowledge. Our experiments suggest that the LA kernel yields promising results on various biomedical corpora outperforming two baselines by a large margin. Additional series of experiments have been conducted on the data sets of seven general relation types, where the performance of the LA kernel is comparable to the current state-of-the-art results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Latent Discriminative Model for Compositional Entailment Relation Recognition using Natural Logic

Recognizing semantic relations between sentences, such as entailment and contradiction, is a challenging task that requires detailed analysis of the interaction between diverse linguistic phenomena. In this paper, we propose a latent discriminative model that unifies a statistical framework and a theory of Natural Logic to capture complex interactions between linguistic phenomena. The proposed ...

متن کامل

Disguised Face Recognition by Using Local Phase Quantization and Singular Value Decomposition

Disguised face recognition is a major challenge in the field of face recognition which has been taken less attention. Therefore, in this paper a disguised face recognition algorithm based on Local Phase Quantization (LPQ) method and Singular Value Decomposition (SVD) is presented which deals with two main challenges. The first challenge is when an individual intentionally alters the appearance ...

متن کامل

A comparison of position-specific score matrices based on sequence and structure alignments.

Sequence comparison methods based on position-specific score matrices (PSSMs) have proven a useful tool for recognition of the divergent members of a protein family and for annotation of functional sites. Here we investigate one of the factors that affects overall performance of PSSMs in a PSI-BLAST search, the algorithm used to construct the seed alignment upon which the PSSM is based. We comp...

متن کامل

Protein Fold Recognition and Comparative Modelling using HOMSTRAD, JOY and FUGUE

This article illustrates how tools exploiting the knowledge of protein three-dimensional structure can be used to identify homologues of known structure, generate sequencestructure alignments and assist model building. The tools described here include HOMSTRAD, a database of structure-based alignments for protein families of known structure, JOY, a program to annotate local environments in stru...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Artif. Intell. Res.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2010